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TECHNICAL MEMORANDUM X- 64605 

A F l  RST-ORDER THEORY FOR ROTATING 
G R A V I T Y  GRADIOMETERS 

S U M M A R Y  

The equations of motion for a rotating gradiometer a r e  deveIope6 ana 
specialized t o  a forced harmonic oscillator model that may be sol~ved analyti- 
cally. Numerical results  a r e  given comparing the analytical approxiiaakion 
t o  numerical integration of the exact equations. 

A rotating gradiometer may be visualized a s  two perpendicular 
dumbells coupled a t  their  centers  by a mechanical torsional sprirag pivot,. 
Gradiometers have been studied experimentally and theoretically for appli-  
cation to  a variety of problems involving the measurement of gravitational 
fields [ 1-31 . 

Since the gravitational torque on each dwnbell of the rotating gradi- 
ometer is opposite (and equal if they have equal moments of inert ia) ,  there 
will be a deflection of the spring pivot coupling. This deflection is the 
quantity that is observed and related to the torque which may the11 be related 
to  the external gravitational field and mass .  

The general relationship for the torque on any rigid body because of 
an external gravitational field is presented in the Appendix. This report 
begins with that basic relationship and develops the specific eqm.tions for a 
rotating gradiometer. Conditions a t  resonance a r e  also discussed since the 
gradiometer may be rotated a t  a speed commensurate with the fwidarneatai 
frequency of the spring to give a resonant condition. 



GENERAL EQUAB IONS 

A s  shown in the Appendix, the gravitational torque on any rigid body 
5 ;I rer by 

G is She universal gravitational constant, m i s  the external mass ,  
mrnent  of inertia matr ix of the rigid body, and V, i s  the gravity- 
matrix of the gravitational field generated by m .  It is  also shown in the 

that equation ( 1) i s  invariant under orthhonormal coordinate 
tions. 

- 
1: i s  considered a spherical  homogeneous m a s s  and N ,  V,  txnd 

- sferred to  the principal axes  of the small  body, equation ( 1) becomes 

prlrnes rndlcate that the quantities a r e  re fer red  t o  the princlpa? 
and I '  i s  the diagonalized moment of inertia rnatrlx of 

Flgure 1 gives the geometrical relationship of the prime system 
<L<: ) long  the principal axes  of dumbell no. I ) ,  the u p r i m e d  system (fixed 

-L 

rfi3 1,lboratory) , and the R vector .  

The  torque on durnbell no. L r e fe r red  to  the x , y ,  z system may be 
* 1 ;Is 



Figure 1. Geometry of principal coordinates and laboratory coordinates. 

where T is the transformation matrix from the primed (principal) axes of 
durnbell no. 1; i . e . ,  

cos a1 - sin O1 0 

c o s o l  0 

0 0 

and 

cos 8 cos + 
X 

Y 

z 



After denoting the principal moments of inertia of dumbell no. 1 a s  
Al, Bb, and G I ,  i t  is assumed that A 1 z  0 and B1= C1. Thus, 1; becomes 

Using these results  in equation (3)  gives 

3mGC ( R  R sin2e1+ 33 R sin Q1 cos 8,) 

Y z X z 

3mGC ---&- (-R R cos2e1 + R R sin e l  cos e l )  
X z Y Z 

. t 4) 

3mGC 1 +[(R2 - a 2 )  - s i n 2 B l + R  R 
Y x 2  x Y 

Simila.rly, the gravity-gradient torque on dumbell no. 2 is 

3mGC 
T2 ( R  R sin2 82 + R R sin e 2  cos e2) 

Y z X Z 

3mGC 
.T2 (-R R cos2 o 2  + R R sin s2 cos 0 

X z Y z 

3mGC 
jls2[~2 - R2 ) s in2  B 2  + R  R c o s 2  8 

Y x x Y 

Now assuming that the deflection of one of the dumbells with respect 
to the other is restricted to the x, y plane that coincides with the x', y' 
plcne, then only the N components of the torque contribute to  this 

z 
deflection. This  allows equating the third component of the torque to  the ra te  
of s'iamge of angular momentum along the z axis. Before doing this, how- 
ever, I L ~ C  restoring and damping torques will be formulated. 



The restoring torque on dumbell no. 2 i s  

B J i R ) = - k a  , 

and the damping torque on dumbell no. 2 i s  

N I D ) = - h &  , 

where k  and h are  assumed constant. Likewise, the restoring torque on 
dumbell no. I is 

and the damping torque on dumbell no. i i s  

The sum of all the torques on dumbell no. 1 may be equated to C18; , 
and a similar operation may be performed for dumbell no. 2 .  Thus, 

and 

It is observed from Figure i that 

then 



Using these results  in equations (10) and (11) , a differential equation for ol 

and 8 may be written a s  

and 

IT 
Replacing O 2  with 8 + Q + - 

2 
from equation ( 12) gives the 

e. 

foilo~aring differential equations for Q and 'il a s  functions of cu and el: 

3mG R R ( -  cos2  0 , c o s 2 a  - sin 2 01) + - 
I t 5  X Y 

and 

where 

h h  H =  - + -  k 
and K = - k + - 

Ci 6 2  61 c2 

Thesa are the exact differential equations for  a spherical homogeneous 
perturbi~ag mass  generating a torque on the coupled dumbells where the 



restoring torque is proportional to  the deflection ( a )  of the spring coupling 
and the damping torque is proportional t o  the angular velocity (A) of the 
spring coupling. 

FORCED HARMONIC OSC ILLATOR EQUATIONS 

Equations (15) and (16) a r e  not forced harmonic equations for the 
deflection, and certain assumptions a r e  necessary before they can be reduced 
t o  forced harmonic equations. F i rs t ,  the small angle approximation must be 
made for a s o  that cos  2 a 2 i and sin 2 a 2 a 2' 0 . The second 
assumption that is necessary is t o  assume that R R and R a r e  constant. x7 yy Z 

A third assumption is that O 1  = wt where w = constant angular rate. 

If the above assumptions a r e  made, then 

and 

Since K= ( R  , R , R ) is assumed constant, it may be assumed "cat 
x v z  - " 

R lies along the x axis  without any loss A of generality since this is equivalent 
to  assuming that the x axis  is along R initially; then, 

3mG Ai + H &  + K C Y  = .3 s i n 2 o t  , R 

which is the forced harmonic oscillator equation. 



SOLUTION OF THE FORCED HARMON I C 
OSCILLATOR EQUATION 

The solLaGion to equations of the form of equation (19) a r e  well known. 
An excellent dcdisussion of the solutions may be found in Reference 5. 

H The solution t o  equation ( 19) for  - < K may be written a s  
2 

a 
o = e-bt ( A l  cos  qt + A 2  sin qt) + - sin(2wt - p )  

P 

and and A 2  a r e  initial integration constants. 

One quantity that is usually of interest is the time constant 7, which is 
I 

som.atimes referred to  a s  the relaxation time o r  the - folding time. This  is e A 

I 
the time required for the f i r s t  t e r m  (transient term) to reach - of its 

I 2 e 
- original value. This  occurs when br  = I ; i. e .  , T = - - - 

b H 
which is seen 

so depend an the damping of the oscillator. When t -- .o, the transient t e rm 
goes do Lero. This  is the transient time that is seen to  take several t ime 
constant,s 'LO get down to  one-hundredth o r  one-thousandth of the initial value. 

thz? transient time, the oscillator is considered to be in steady state with 
amp, ~tu i j e  



o r  for  n >> -;L = b , 
7 

and from equation (24)  , 

which gives 

Th i s  indicates that a high f and high Q a r e  incompatible. 

COMPARISONS AND RESULTS 

The resu l t s  of the forced harmonic solution and numerical integrnt~ 0:- 
of equations ( 15) and ( 16) a r e  shown in Table I .  The initial conditions 
assumed were a s  follows: 

and 

A s  can be seen, the steady-state resu l t s  agree  through the third 
significnnt figure. From these resu l t s ,  it may be concluded that the forced 
h:irmonic o s c i l ~ ~ l o r  approxilnation is sufficient for design purposes.  It should 
bc noted that the forced harmonic oscillator theory a s sumes  a l inear spx-~ng 
ecsnstt~nt :ind damping coefficient. 



Another point of interest is the driving frequency w required to give 
maximum steady-state amplitude. This occurs when p is a minimum; thus, 
diaerentiating p with respect to 2w and equating the result to zero gives the 
e onditions 

for maximum amplitude. These results may be used for determining the best 
operating conditions of a gradiometer . 

Savet [3] has suggested a figure of merit f for various sensors defined 
as  the sensitivity o divided by the time constant squared r2.  The sensitivity 
is defined a s  the steady-state displacement amplitude divided by the amplitude 
of the forcing term. This figure of merit in the present discussion turns out 
to be 

Using equation (22) in the above, 

If the quality amplification factor Q i s  defined a s  the energy stored 
in the spring divided by the energy dissipated per cycle a t  resonance and 
steady state, then 



TABLE 1. POINTS I N  STEADY STATE FOR 1 e/s 

Numerical Integration 

Time (sec) Delta (radians Time (sec) Delta. (radians 

Figure 2 shows the waveform for 20 see, which indicates that the 
transient term lasts for about 47 since T i s  5 sec for this ease, 



l @Is RUN 

I - ; 0 -i--,--m** 

u 2 4 8 10 12 14 18 M 
TlME IN SECONDS 

Figure 2 .  Waveform for  20 sec for  1 c / s  run. 



THE GRAVITY-GRADIENT TORQUE A S  A CONTRACTED 
A L E R N A T I  NG PRODUCT 

THE GRAV ITATI  ONAL TORQUE OF ONE R I G  I D BODY ON ANOTHER 

T o  establish explicit invariant relationships between the mcainent of 
inertia of a small  body, the gravity gradient because of the presence of larger 
bodies, and the torque on the small  body, it i s  necessary to  define the moment 
of inertia and gravity gradient in such a way that their  transformation prope&ies 
a r e  known. 

The Mment of inertia 

-- - - --_ ___ 
From ~ i g u X - A ,  the moment of-inertias usually a r e  defined as  

- - - - -  

- J Pi P .  dm for i f j  
m J  

I.. = Y 

1J (A-1) 
J ( p 2 - p f ) d m  for  i = j  
m 

d 

where p 2 (pi, p2, p3) , i 2 (1, 2, 3) , and j 1 2, 3 . Tca check the 
transformation properties of I a n  orthonormal Cartesian coordinate 

ii' 
transformation M is defined such that ;= M? ; i. e. , 

and 

Then, equation (A-I)  becomes fo r  i f j 





T 
= (MI')" p. ,= (MI'M ) ij 

1q 39 

Thus, I = MI'MT for i f j . For  i = j, the integrals in equation ( A  -i) 

a r e  al l  of the form p.p. d m ,  which will also transform according to 
1 1  m 

equation (A-2) . 

The Gravity Gradient 

The gravity gradient is usually defined a s  the second partial derivatives 
of a potential function, say V(xI, x2, x3) . Then, 

- a 2v 
V'i j  = ax. ax. 

1 1  

T o  check the transformation properties of V, . . an  orthonormal Cartesian " - 
coordinate transformation M is defined such that x = M~ . Thus, 



Now, 
- --- 

a av -- 
ax. ax p'i 

J P' 

The Torque as the CAP Product of V, and I 
- 

F-ron? Figure 1, the element of force d(dF) on the element of mass 
dsn becaase s f  the element of mass dm:: is 

---> d +- 
t i ,  dF") = - Gdmdm::' -;i3 - - ~ d m d m *  f ( d )  . 

+ - +  
J smce d = r + p and it is assumed that p << r, then the i 

th 



Now, substituting equation (A-6) into equation ( A - 5 ) .  

The torque about 0 because of the force of dm:: on dm i s  

Integrating first over m gives 

The first integral on the right is zero because of the choice of 0 a s  the center 
of mass for m,. The cross product in equation (A-7) is 

Expanding and integrating over M gives 



A s  a rnotiitie~n? convenience, it may be observed that the result  in equation 
{A-8) may be obtained by placing the column o r  row vectors of V, and I 
in a determinant and using the conventional c r o s s  product rule except that the 
dot prociuet is used when muntiplying the column vectors. Using the Contracted 
i ter-wting Product (CAP)  symbol @ to  indicate this operation between V, 
2nd 3, cane bas 

w h c h  i s  the same a s  equation (A-8) since V. - (V, ii, V, i2, V, i3),  
1 

.-> 

1 Zz (1 I I .) and both V, and I a r e  symmetric. Thus, the torque i. S i  2i7 31 
g51,633 in equation (A-8) may be written a s  the CAP product of V, and I a s  

T h ~ s  s eonsidered to  be desirable since it has  the effect of separating o r  
isoldtin& h o s e  effects that depend on the field which is in V, and those that 
depecd on the physical characteristics of the body which is in I. It  a lso gives 
thew relationship t o  the torque. 



The Torque Referred to a Coordinate System in Which 
I is Diagonal 

It may be shown that applying an orthonormal transformation to the 
CAP product of two matrices (or  tensors) is the same a s  the G A P  product of 
the transformed matrices (o r  tensors). It has already been seen that V, and 
I transform according to equations (A-2) and A-4) ; then, if M is the trans- 
formation from N' to N, 

From the preceding discussion it i s  clear that to refer the torque 
to a particular coordinate system, both V, and I must also be referred to  
that system. For example, I may be diagonalized by referring 1 to the 
principal axes of M. In this system, the CAP product becomes 

where the primes indicate that the quantities are  referred to the principal axes 
of m . From equation (A-12) , the torque in the primed system depends con the 
three cross gradients; however, if the torque is transformed by a general 
rotation of coordinate axes, each component of the torque depends on all five 
of the independent gradient elements a s  indicated by equation ( A  -4) . 



Tho Torque of a Spherically Symmetric Homogeneous Body on  a 
Small Distant Body 

-%. 

Ii rn" is spherically symmetric, then p"'= ( 0, 0,0) in Figure 1- A so - 4 , -a 

that r =- R - pCp = R; then, 

Substiti~ting the above into equation (A-10) and integrating gives 

T k s  - s t ?e same result a s  used in Reference 6.  

P :a explicit relationship has been developed between the gravity gradient, 
30~1432t of inertia, and torque of one large rigid body on another small body. 
Frcx  I,h s theory, eonelusions can be drawn concerning observable quantities 
and der b e d  information from the observables . Also various applications, 
me3 sd re ztefit concepts, and analysis techniques can be developed. 
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